Airport Airspace Modelling Analysis


Airside Aircraft Movements

Key benefits

This AirTOp module allows airport authorities or operators to assess and improve airport capacity by modeling airside aircraft movements.

It supports the rule-based modeling of

  • parking/gate allocation,
  • push/pull procedures, taxibot/ETaxi
  • taxi flow control,
  • runway entry/exit selection,
  • single/multiple runway sequencing
  • runway crossing,
  • turn-around management,
  • de-icing procedures,
  • ground metering and DMAN,
  • dynamic runway direction change.

When reorganising taxi routes, implementing mixed mode runway configuration or new ground equipment, potential bottlenecks on the surface can easily be visualised and alternative scenarios can be tested.

Detailed airport layouts and procedures can be easily created, modified, simulated and compared using the powerful integrated  2D and 3D Graphical User Interface. Performance indicators such as fuel-burn, taxi-time or runway queues can be extracted and discussed with stakeholders on a common platform.

This module can be used as a stand-alone application, and is also integrated into the AirTOp framework, making it possible to combine it with the other AirTOp modules (ATFCM, Airspace TMA/EnRoute, GSEs, landside) and providing complete terminal-to-terminal simulation capability.

AirTOp has already been used to model and improve more than 100 major airports worldwide, by airport operators directly or through service companies, ANSPs or research labs.

Scenario definition

The import and graphical editing tools enable fast and precise designs of airport ground layout, DXF or .pol layouts can be imported, and/or airport satellite images or charts can be used as background to the map view.

AirTOp thus features all ground airport structures including runway entries/exits/crossings/stop bars, taxiway segments, gates, remote parking positions, long term parking positions, aprons, hangars, de-icing stations, and more, as well as all associated usage restrictions.

Parking position / gate allocation can be either imported from external flies, or generated/optimized by AirTOp built-in tools considering aircraft and airline constraints/preferences. The built-in gantt chart view can be used to visualize the resulting parking positions allocation plan (with filters and custom styling functions). The same view can also be used to manually modify the imported/generated plan, or create a plan from scratch. The same chart can be also used to visualize the actual allocation plan after simulation, and compare with the initial planned one.

Ground movement modeling

The powerful AirTOp rule-based engine lets the end-user easily define all typical airport controller tasks, such as runway entry/exit selection and usage, runway crossing procedures, runway lining-up procedure, allocation of gates/parking positions/stand-off positions/hangars, flight plan connections and turnaround management, towing operations, de-icing procedures (at gate or at dedicated stations), re-routing, stop-and-waitrunway departure/arrival separations, etc.

AirTOp also supports the modeling of random gate delay, Flow Management (AMAN), push back or takeoff target time: see Traffic Flow Management.

Departure Management (Runway Departure Sequence DMAN)

AirTOp can model the tasks of a runway controller receiving the departure taxiing aircraft inside his/her area of responsibility, building an optimized take-off sequence and controlling aircraft taxiing inside his/her area in order to respect this sequence.

AirTOp can also model the effect of a DMAN (Departure MANAger) system, which can generate an optimized take-off sequence while aircraft are taxiing or still at gate.

This generic DMAN can be setup in order to model pushback time control and/or taxi flow control in all or some predefined areas.

Those controls can be done in order to:
•    achieve a max queue size at the runway or at the runway controller area of responsibility entry/entries,
•    or bring the taxiing traffic to the runway entry/entries following a pre-computed optimized departure sequence,
•    or any combination of the above.


Controller workload can also be simulated dynamically, and can be customized for all types of airport controllers (apron, taxi, runway). The workload model can associate work duration to any event (e.g. startup/push back/taxi/runway crossing/lining-up/start takeoff clearances, allocation of parking position locations/stand-off locations/runway entry/de-icing station, re-routing, stop-and-wait …).
It can take also into account the monitoring of flight activities of all types (taxiing, stopped at crossing/stand-off, waiting for clearance etc).
The work duration associated to event handling can be split into generic user defined activities (radio com, monitoring, conflict resolution etc), and the duration spent per event type and per activity can then be logged per rolling hour.

A customizable event log can be easily created by the user and exported to Excel files or an SQL database for external specific analysis. Events can be related to any action taken by a controller (see above) or an aircraft (start takeoff roll, liftoff, runway touch down, runway exit, runway crossing reach, arrival at gate, start push back, start engine, start taxiing/runway crossing/lining-up etc). Each event  can be logged, together with information related to the current status of the aircraft (aircraft type, airline, landing/departing runway, speed/attitude, departure/arriving/long term allocated parking position, aircraft/airport delays, …).

Ground delays are measured accurately per aircraft and can be logged at different times (see above). Those ground delays include  gate delays (because of passengers or late tug), taxi delays (dep/arr/total), departure runway delays, runway crossing delays (dep/arr/total).

Delay calculation takes realistic aircraft acceleration and deceleration into account, as well as a user defined (and optionally random) ground speed which can depend on the aircraft phase and/or the aircraft location in the airport.

Playback of taxiway reporting (top) and distribution chart (bottom), including total delay lost and number of delayed aircraft

Delays can be then collected for all airports, for movement to/from one or more airport runway(s), or even for one or more portions of a taxiway.

Ground fuel burned and emissions of aircraft engines and APU can be accurately modeled for all phases of the aircraft (waiting for push back, pushing back, starting up and warming up engine, taxiing, stopped etc).

Built-in event plotting and statistics query and display are available and ready to use. Statistics can be reported at the level of an airport, a runway or a group of runways, or portion(s) of taxiways.

Built-in plot of airport KPIs distribution (rolling hour) of overall airport or runway sub-set. Plot includes throughput (gate, runway), controller workload, as well as average/total delays (see above) compared with arrival en-route/AMAN delays and TMA sequencing/holding delays

New-York JFK simulated track playback on top of satellite image screen shot geo-referenced using AirTOp import tool. Playback also shows taxiway delay and delayed aircraft count over the last rolling hour


More information about AirTopSoft TRANSOFT please contact PT OTOMAN INDONESIA or
direct call +62 811 244 9889